Home Artists Posts Import Register

Content

more at http://quickfound.net/


Originally a public domain film from the US government, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.

The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).


https://www.ne.anl.gov/About/reactors/frt.shtml


Fast Reactor Technology


Argonne pioneered the development of fast neutron reactors and is a leader in their development worldwide. These reactors run on the fast neutrons from fission; the term is generally shortened to “fast reactors”. Although there are currently very few of them operating, they will ultimately prove vital to extending the world's uranium and thorium energy supplies to tens of thousands of years and to removing the long-lived radiotoxicity from used nuclear fuel.


Designing reactors is just like designing cars – it takes information from both computer codes and experiments for engineers to produce a robust, safe, effective design. The experimental facilities below provided much of the data that Argonne and other organizations used in the 20th century and use today to design fast reactors.


The ZPR and ZPPR facilities provided self-sustaining chain reaction physics experiments, but at a power so low that no cooling was needed – hence the term Zero Power Reactor (ZPR). Argonne performed hundreds of sets of such experiments...


ZPR-3 (Zero Power Reactor 3)


Zero Power Critical Reactor No. 3 (ZPR-3) was designed and operated for the Atomic Energy Commission (AEC) by Argonne National Laboratory at the National Reactor Testing Station, the first and smallest of the split-table critical facilities used to investigate the physics properties of enriched uranium- or plutonium-fueled fast reactors. It was used to perform critical reactor experiments for the Enrico Fermi fast reactor in which Argonne scientists and engineers assisted in the data analysis. Subsequent experiments on ZPR-3 were directed at all aspects of fast reactor physics.


The facility provided a method for using experimental mock-ups to determine the accuracy of the calculated properties of small fast reactors. In particular, properties such as critical mass and geometry and power distributions for different fast reactor variations were determined using ZPR-3 mockups. Experimental critical assembly results in this field were almost completely lacking before the advent of the ZPR-3 facility in October, 1955. Sixty-three different reactors were tested in the ZPR-3 facility before the larger ZPR-6 and ZPR-9 facilities became available in 1963-64.


The critical assembly machine is basically a platform on which two tables or carriages are mounted, one of which is movable. Half of the assembly is built up on each carriage by means of a matrix structure. Trays in each matrix location are filled with fissionable material and other metals to permit the simulation of various reactor types and configurations. The movable carriage allows the assembly to be split in half, both as a safety measure and for convenience in loading. Criticality is achieved when the two halves are brought together and the control rods suitably positioned.


Eventually the ZPR-3 experiments were terminated and the program was transfered to the larger and more flexible facilities, ZPR-6, ZPR-9 and ZPPR. The ZPR-3 core is currently avaliable for public view at the EBR-I site.

Files

Zero Power Reactor III (ZPR-III) ~ 1956 Argonne National Laboratory

Support this channel: https://paypal.me/jeffquitney OR https://www.patreon.com/jeffquitney more at http://quickfound.net/ Originally a public domain film from the US government, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.

Comments

No comments found for this post.