Vikings to Mars 1975 NASA (Three Clips from Aeronautics and Space Report) (Patreon)
Content
more at http://quickfound.net/
Originally a public domain film from NASA, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).
https://en.wikipedia.org/wiki/Viking_1
Wikipedia license: http://creativecommons.org/licenses/by-sa/3.0/
Viking 1 was the first of two spacecraft (along with Viking 2) sent to Mars as part of NASA's Viking program. On July 20, 1976, it became the second spacecraft to soft-land on Mars, and the first soft lander to successfully perform its mission. (The first spacecraft to soft-land on Mars was the Soviet Union's Mars 3 on December 2, 1971, which stopped transmitting after 14.5 seconds.) Viking 1 held the record for the longest Mars surface mission of 2307 days (over 6¼ years) or 2245 Martian solar days, until that record was broken by Opportunity on May 19, 2010...
Mission
Following launch using a Titan/Centaur launch vehicle on August 20, 1975, and a 10-month cruise to Mars, the orbiter began returning global images of Mars about 5 days before orbit insertion. The Viking 1 Orbiter was inserted into Mars orbit on June 19, 1976, and trimmed to a 1513 x 33,000 km, 24.66 h site certification orbit on June 21. Landing on Mars was planned for July 4, 1976, the United States Bicentennial, but imaging of the primary landing site showed it was too rough for a safe landing. The landing was delayed until a safer site was found, and took place instead on July 20, the seventh anniversary of the Apollo 11 Moon landing. The lander separated from the orbiter at 08:51 UTC and landed at 11:53:06 UTC. It was the first attempt by the United States at landing on Mars.
Orbiter
The instruments of the orbiter consisted of two vidicon cameras for imaging (VIS), an infrared spectrometer for water vapor mapping (MAWD) and infrared radiometers for thermal mapping (IRTM)...
Lander
The lander and its aeroshell separated from the orbiter on July 20 at 08:51 UTC. At the time of separation, the lander was orbiting at about 5 kilometers per second (3.1 miles per second). The aeroshell's retrorockets fired to begin the lander de-orbit maneuver. After a few hours at about 300 kilometers (190 miles) altitude, the lander was reoriented for atmospheric entry. The aeroshell with its ablative heat shield slowed the craft as it plunged through the atmosphere...
At 6 km (3.7 mi) altitude, traveling at about 250 meters per second (820 feet per second), the 16 m diameter lander parachutes deployed. Seven seconds later the aeroshell was jettisoned, and 8 seconds after that the three lander legs were extended. In 45 seconds the parachute had slowed the lander to 60 meters per second (200 feet per second). At 1.5 km (0.93 mi) altitude, retrorockets on the lander itself were ignited and, 40 seconds later at about 2.4 m/s (7.9 ft/s), the lander arrived on Mars with a relatively light jolt. The legs had honeycomb aluminum shock absorbers to soften the landing.
The landing rockets used an 18-nozzle design to spread the hydrogen and nitrogen exhaust over a large area...
The Viking 1 lander touched down in western Chryse Planitia ("Golden Plain") at 22.697°N 48.222°W...
Transmission of the first surface image began 25 seconds after landing and took about four minutes (see below). During these minutes the lander activated itself. It erected a high-gain antenna pointed toward Earth for direct communication and deployed a meteorology boom mounted with sensors. In the next seven minutes the second picture of the 300° panoramic scene (displayed below) was taken. On the day after the landing the first color picture of the surface of Mars was taken. The seismometer failed to uncage, and a sampler arm locking pin was stuck and took five days to shake out. Otherwise, all experiments functioned normally. The lander had two means of returning data to Earth: a relay link up to the orbiter and back, and by using a direct link to Earth. The data capacity of the relay link was about 10 times higher than the direct link...