Radar, Ground Surveillance, AN-TPS-25 1962 US Army Training Film TF6-3251 (Patreon)
Content
more at http://quickfound.net/
FEATURES AND SURVEILLANCE CAPABILITY - MODES OF OPERATION AND APPLICATION IN TARGET IDENTIFICATION - AUTOMATIC SEARCH, AUTOMATIC RANGE, MANUAL SEARCH, MANUAL TRACK AUDIO, AND MANUAL TRACK VIDEO.
Originally a public domain film from the National Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).
https://en.wikipedia.org/wiki/Radar
Wikipedia license: http://creativecommons.org/licenses/by-sa/3.0/
Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the object(s). Radio waves (pulsed or continuous) from the transmitter reflect off the object and return to the receiver, giving information about the object's location and speed.
Radar was developed secretly for military use by several nations in the period before and during World War II. A key development was the cavity magnetron in the United Kingdom, which allowed the creation of relatively small systems with sub-meter resolution. The term RADAR was coined in 1940 by the United States Navy as an acronym for RAdio Detection And Ranging. The term radar has since entered English and other languages as a common noun, losing all capitalization.
The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy, air-defense systems, antimissile systems, marine radars to locate landmarks and other ships, aircraft anticollision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, altimetry and flight control systems, guided missile target locating systems, and ground-penetrating radar for geological observations. High tech radar systems are associated with digital signal processing, machine learning and are capable of extracting useful information from very high noise levels. Radar is a key technology that the self-driving systems are mainly designed to use, along with sonar and other sensors.
Other systems similar to radar make use of other parts of the electromagnetic spectrum. One example is LIDAR, which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driverless vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents...